Our faculty are internationally-recognized experts in the fields of exercise science, athletic training, physical therapy, and sports nutrition and in the Department of Kinesiology, have made significant and far-reaching advancements in the areas of exercising in extreme environmental conditions, exercise ‘-omics’, exercise prescription and rehabilitation for a variety of clinical populations, and neuromuscular and musculoskeletal injury prevention and rehabilitation.

In the past two years the Department of Kinesiology faculty have published nearly 200-refereed publications, and 6 books, and presented their work at national and international conferences, and served the community through policy development, education and direct patient care.

Program Contacts
Dr. Stephanie M. Singe, PhD, ATC, FNATA
Associate Professor, Academic Advisor
stephanie.m.singe@uconn.edu

Dr. Elaine C. Lee, PhD
Associate Professor, Director of HPL
elaine.c.lee@uconn.edu

Exercise Science (B.S)
College of Agriculture, Health, and Natural Resources
Department of Kinesiology
The Exercise Science (BS) major provides a comprehensive understanding of exercise, human performance, and healthy living. This major prepares graduates for graduate study of exercise science or healthcare professions including medicine, physician assistant studies, physical therapy, and athletic training. Students complete coursework in general education, kinesiology, cognate areas (outside, but supportive of, Exercise Science), with an emphasis on basic science courses.

The Exercise Science program, depending on the extent of your education, could lead to any of the following professions: clinical exercise physiologist, corporate wellness programming, public health and service, pharmaceutical sales, and product development for sports/performance/health, exercise specialist, strength and conditioning specialist, personal trainer, laboratory technician, or exercise scientist.

The Exercise Science program offers a broad spectrum of research experiences, research experiences which include: environmental physiology, thermoregulation and health illness, exercise ‘omics’, cardiovascular physiology, endocrinology, exercise prescription for a variety of clinical populations, biomechanical considerations, injury prevention, muscle physiology, and complementary and alternative types of exercise among populations across the lifespan.